Cho hình phẳng (H) giới hạn bởi đường cong có phương trình
y
=
x
2
−
4
x
+
3
và đường thẳng y=x+3 (phần đô đậm trong hình vẽ). Tính diện tích S của hình phẳng (H)
A. S = 47 2 .
B. S = 39 2 .
C. S = 169 2 .
D. S = 109 2 .
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Cho hình phẳng (H) giới hạn bởi đường cong có phương trình y = x 2 - 4 x + 3 và đường thẳng y = x + 3 (phần đô đậm trong hình vẽ). Tính diện tích S của hình phẳng
Tính diện tích S của hình phẳng (H) giới hạn bởi đường cong y = - x 3 + 12 x và y = - x 2
A. S = 343/12
B. S = 793/4
C. S = 397/4
D. S = 937/12
Hình phẳng giới hạn bởi các đường cong y = x ( 1 - x ) và y = x 3 - x có diện tích bằng
Cho hình phẳng (H) giới hạn bởi các đường y = x ln x , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng (H).
Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S hình phẳng giới hạn bởi các đường y = x 2 + 1 ; x=-1; x=2 và trục hoành.
A. S = 6
B. S = 13/6
C. S = 13.
D. S = 16.
Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong y = - x 3 + 12 x v à y = - x 2 là: