1=1*2/2
1+2=2*3/2
1+2+3=3*4/2
...
1+2+3+...+2012=2012*2013/2
Thay vào là ra.
1=1*2/2
1+2=2*3/2
1+2+3=3*4/2
...
1+2+3+...+2012=2012*2013/2
Thay vào là ra.
\(D=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
Thực hiện các phép tính sau một cách hợp lí:
\(D=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+......2012}}\)
Tính \(E=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
Tính A = \(\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
Tính \(E=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
Tính:
\(\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}}\)
tính giá trị biểu thức
\(A=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}.....+\frac{1}{1+2+......2012}}\)
1)Tinh
a)\(A=\left(\frac{112}{13.20}+\frac{112}{20.27}\frac{112}{27.34}+...+\frac{112}{62.69}\right):\left(-\frac{5}{9.13}-\frac{7}{9.25}-\frac{13}{19.15}-\frac{31}{19.69}\right)\)
b)\(B=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
Tính\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+\frac{2010}{4}+...+\frac{1}{2013}}\)