\(C=\frac{1}{100} -\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
chắc là 200,đoán thế thôi,chưa tính
\(C=\frac{1}{100} -\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
chắc là 200,đoán thế thôi,chưa tính
tính nhanh : \(C=\frac{1}{100}-\frac{1}{100.99}\frac{1}{99.98}-\frac{1}{98.97}-...........-\frac{1}{3.2}-\frac{1}{2.1}\)
Cho\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\). Tính 50.C
Tính nhanh
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}=?\)
tính nhanh
A= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
Tính nhanh :
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
C = \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}.\)
cho C =\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)