\(A=\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{100\cdot104}\)
\(A=\frac{7-4}{4\cdot7}+\frac{11-7}{7\cdot11}+\frac{15-11}{11\cdot15}+...+\frac{104-100}{100\cdot104}\)
\(A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{4}-\frac{1}{104}\)
\(A=\frac{25}{104}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B\cdot2=\left(\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\right)\cdot2\)
\(B\cdot2=\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\)
\(B\cdot2=\frac{27-25}{25\cdot27}+\frac{29-27}{27\cdot29}+\frac{31-29}{29\cdot31}+...+\frac{75-73}{73\cdot75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{75}\)
\(B\cdot2=\frac{2}{75}\)
\(B=\frac{2}{75}\frac{\cdot}{\cdot}2\)
\(B=\frac{1}{75}\)
\(C=\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
\(\frac{C}{2}=\frac{3}{15\cdot18}+\frac{3}{18\cdot21}+\frac{3}{21\cdot24}+...+\frac{3}{87\cdot90}\)
\(\frac{C}{2}=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\)
\(\frac{C}{2}=\frac{1}{15}-\frac{1}{90}\)
\(\frac{C}{2}=\frac{1}{18}\)
\(C=\frac{1}{18}\cdot2\)
\(C=\frac{1}{9}\)
dấu chấm là dấu nhân à, vậy dấu ... là 3 dấu nhân đúng ko :>>
A=\(\frac{3}{4.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
Đặt E=\(\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
E=\(\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
E=\(\frac{1}{7}-\frac{1}{104}\)
\(\rightarrow\)A=\(\frac{3}{4.7}\)+E
A=\(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{104}\)
A=\(\frac{1}{4}-\frac{1}{104}\)
A=\(\frac{25}{104}\)
Vậy A=\(\frac{25}{104}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
B=\(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}\right)+\frac{1}{2}\left(\frac{1}{27}-\frac{1}{29}\right)+...+\frac{1}{2}\left(\frac{1}{73}-\frac{1}{75}\right)\)
B=\(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
B=\(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
B=\(\frac{1}{2}.\frac{2}{75}\)
B=\(\frac{1}{75}\)
Vậy B=\(\frac{1}{75}\)
Câu C tương tự