=\(\frac{\text{(1.3).(2.4).(3.5)...(99.101)}}{\text{(2².3².4²...100²) }}\)
=\(\frac{\text{(1.2.3...99).(3.4.5...101)}}{\text{[(1.2.3.4...100)(2.3.4...100)] }}\)
=\(\frac{\text{101}}{100.2}\)
=\(\frac{101}{200}\)
=\(\frac{\text{(1.3).(2.4).(3.5)...(99.101)}}{\text{(2².3².4²...100²) }}\)
=\(\frac{\text{(1.2.3...99).(3.4.5...101)}}{\text{[(1.2.3.4...100)(2.3.4...100)] }}\)
=\(\frac{\text{101}}{100.2}\)
=\(\frac{101}{200}\)
\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x.......x\frac{9999}{10000}\)
C=\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x.......x\frac{9999}{10000}\)
B=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{9999}{10000}=?\)
Tính P= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}..........\frac{9999}{10000}\)
Chứng minh \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)không phải là số tự nhiên
Tính A = \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...........\frac{9999}{10000}\)
giúp mk với
Thu gọn :
\(P=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}\)
B=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
Tính B
Cho A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
Tính 200.A