Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải Đăng

tính các tích sau

\(a=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{9999}{10000}\)

\(b=\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times...\times\left(1-\frac{1}{10000}\right)\)

\(c=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)

\(d=\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{99\times100}\right)\)

Trần Hoài Bão
2 tháng 7 2015 lúc 14:55

\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)

    \(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)

    \(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)

    \(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)

     \(=100.\frac{2}{101}\)\(=\frac{200}{101}\)

Đỗ Thị Khánh Linh
31 tháng 3 2016 lúc 8:56

\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)

    \(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)

    \(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)

    \(=\frac{1}{1994}\)                         (Giản ước còn lại như này)


Các câu hỏi tương tự
Trần Thanh Huyền
Xem chi tiết
Trần Hữu Thắng
Xem chi tiết
Quậy nhất xóm
Xem chi tiết
Nguyễn Chí Gia Bảo
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
sakura ichiko
Xem chi tiết
Vũ Hồng Vân
Xem chi tiết
EXO_CHANYEOL
Xem chi tiết
Trần Gia Huy
Xem chi tiết