Tính tích phân: I= ∫ 0 2 | 1 - 2 x | d x
A.I= 3 2
B.I=2.
C.I= 5 2
I=3.
Tính tích phân I = ∫ 0 ln 2 ( e 4 x + 1 ) d x .
Cho hàm số f(x) liên tục trên R và các tích phân ∫ 0 π 4 f ( tan x ) d x = 4 và ∫ 0 1 x 2 f ( x ) x 2 + 1 d x , tính tích phân I = ∫ 0 1 f ( x ) d x
A. 6
B. 2
C. 3
D. 1
Cho tích phân I = ∫ 0 4 f ( x ) d x = 32 . Tính tích phân J = ∫ 0 2 f ( 2 x ) d x
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Tính tích phân sau: J = ∫ 2 4 ln 9 - x ln x + 3 + ln 9 - x d x
A. 0
B. 1
C. 2
D. 3
Cho hàm số f(x) thỏa mãn ∫ 0 1 ( x + 1 ) f ' ( x ) d x = 10 và 2f(1) - f(0) = 2 .Tính tích phân I = ∫ 0 1 f ( x ) d x .
A. I=-12.
B. I=8.
C. I=12.
D. I=-8
Cho hàm số f(x) liên tục trên R và thỏa mãn f ( x ) + f π 3 - x = 1 3 sin x cos x ( 8 cos 3 x + 1 ) . Biết tích phân I = ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I = a b ln c d và các phân số là các phân số tối giản. Tính S = a 3 + a b - c + d
A. S=6
B. S=3
C. S=5
D. S=7
Cho tích phân I = ∫ 0 2 f ( x ) d x = 2 . Tính tích phân J = ∫ 0 2 3 f ( x ) - 2 d x
Cho ∫ - 2 1 f ( x ) d x = 3 Tính tích phân ∫ - 2 1 [ 2 f ( x ) - 1 ] d x
A. -9
B. -3
C. 3
D. 5