Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Sơn

Tính: B=\(\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}\)khi x,y,z là các số thực khác 0 và\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)

Đinh Đức Hùng
21 tháng 3 2017 lúc 20:32

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)

 \(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)

CM tương tự ta cũng có : \(x=y;y=z\)

\(\Rightarrow x=y=z\) Thay vào B ta được :

\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)


Các câu hỏi tương tự
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
hhhh
Xem chi tiết
Hà Minh Trang
Xem chi tiết
trinh bich hong
Xem chi tiết
Trần Việt Anh
Xem chi tiết
Ruby Sweety
Xem chi tiết
Đinh Thị Thảo Vi
Xem chi tiết