Tính B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
Còn thiếu mũ 99 ở cuối cùng nha
Tính B=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
Tính \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
Tính \(\left(\frac{1}{2^2-1}\right)\left(\frac{1}{3^2-1}\right)\left(\frac{1}{4^2-1}\right)...\left(\frac{1}{98^2-1}\right)\left(\frac{1}{99^2-1}\right)\)
Tính \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}\) ta được B =...
\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+.......+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
Tinh \(B=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot....\cdot\left(\frac{1}{98^2}-1\right)\cdot\left(\frac{1}{99^2}-1\right)\)
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
chứng minh B <1
Tính A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
Hi vọng các CTV và giáo viên olm giúp