\(B=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{210}\)
\(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{420}\)
\(=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{20.21}\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=6\left(1-\frac{1}{21}\right)\)
\(=6.\frac{20}{21}=\frac{40}{7}\)