B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + .... + (n - 1).n.(n + 1).[(n + 2) - (n - 2)]
4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
4B = (n-1)n(n+1)(n+2)
B = (n-1)n(n+1)(n+2) : 4
Ta có : 4B =4 . ( 1.2.3 + 2.3.4 + ...+ (n - 1 )n( n + 1 )
<=> 4B = 1.2.3 .( 4 - 0 ) + 2.3.4 .( 5- 1 ) + ... + ( n - 1 ) n ( n + 1 ) [ ( n + 2 ) - ( n - 2 ) ]
<=> 4B = 1 . 2 . 3 . 4 +2 . 3. 4 .5 -1.2.3 .4 + ... + ( n- 1 ) n ( n + 1 ) ( n + 2 )- ( n-1)( n+1).n/( n- 2 )
<=> 4B = ( n- 1 ).( n+1 ).n.( n + 2 )
<=> B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)
Vậy B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)