Tính giá trị của biểu thức:
a) \(\sqrt{49}+\sqrt{\left(-5\right)^2}-5\sqrt{1,44}+3\sqrt{\frac{4}{9}}\)
b) \(\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2+\left(4.\sqrt{0,5}\right)^2-\left(\frac{1}{5}.\sqrt{125}\right)^2\)
C = \(25.\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)
D = \(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
F =\(\left(-\frac{3}{2}\right)+|-\frac{5}{6}|-1\frac{1}{2}:6\)
G = \(\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}\)
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Tính giá trị biểu thức:
\(\left(2\sqrt{3}\right)^2\)\(-\left(3\sqrt{2}\right)^2\)\(+\left(4\sqrt{0,5}\right)^2\)\(-\left(\frac{1}{5}\sqrt{125}\right)^2\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
Tính nhanh:
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{25}\right).\left(-\frac{4}{15}\right)}{\:\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right).\left(\frac{5}{7}\right)}\)
a)\(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right) \)
b)\(\frac{1}{2}\sqrt[]{64-\sqrt{\frac{4}{25}+1^{2012}}}\)
c) \(9.\left(\frac{1}{3}\right)^3:\left[\left(\frac{-2}{3}\right)^2+0,5-1\frac{1}{2}\right]\)
d)\(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(\frac{3}{4}+\frac{1}{4}\div\left(\frac{-2}{3}\right)-\left(-5\right)\)
\(12\cdot\left(\frac{2}{5}-\frac{5}{6}\right)^2\)
\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
\(\left(9\frac{3}{4}\div3.4\cdot2\frac{7}{34}\right)\div\left(-1\frac{9}{16}\right)\)
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)