1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính hợp lí:
\(\left(1+\frac{1}{1+2}\right)\cdot\left(1+\frac{1}{1+2+3}\right)\cdot...\cdot\left(1+\frac{1}{1+2+3+...+997}\right)\)
Tính nhanh
a, \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
b, \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
Tính A = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{2013}\left(1+2+...+2013\right)\)
bài 1 : tính
1) A = \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)........\left(\frac{1}{99}+1\right)\)
2) B = \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right).....\left(\frac{1}{99}-1\right)\)
Tính giá trị biểu thức sau một cách hợp lí:
\(A=\left(1+\frac{1}{1+2}\right)\times\left(1+\frac{1}{1+2+3}\right)\times...\times\left(1+\frac{1}{1+2+...+997}\right)\)
Tính: \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)....\left(1-\frac{1}{1+2+3+...+2000}\right)\)
Tính
a)\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{999}+1\right);\)
b)\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{1000}-1\right)\)
c)\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
Câu 1: Tính
a) A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
b) B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)
c) C=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^4}\)