Mẫu số = \(\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
= \(1+1+1+...+1\) ( có tổng cộng 2015 số 1) \(+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
= \(\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)\)
= \(\left(\frac{2}{2}+\frac{2014}{2}\right)+\left(\frac{3}{3}+\frac{2013}{3}\right)+...+\left(\frac{2015}{2015}+\frac{1}{2015}\right)\)
= \(\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}\)
= \(2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)\)
Tử số= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\)
Lấy tử số chia cho mẫu số:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)}\)
Đơn giản mẫu và tử.
\(A=\frac{1}{2016}\)