Mình nghĩ \(A=\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+\frac{1}{3\cdot302}+...+\frac{1}{101\cdot400}\)
\(299A=\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+\frac{299}{3\cdot302}+...+\frac{299}{101\cdot400}\)
\(299A=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)
\(299A=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)=C\)
\(A=\frac{C}{299}\)
Lại có;
\(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+....+\frac{1}{299\cdot400}\)
\(101B=\frac{101}{1\cdot102}+\frac{101}{2\cdot103}+...+\frac{101}{299\cdot400}\)
\(101B=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)
\(101B=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)=C\)
\(B=\frac{C}{101}\)
Vậy \(\frac{A}{B}=\frac{C}{299}:\frac{C}{101}=\frac{101}{299}\)