\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(A=1-\frac{1}{5}=1-0.2=0.8\)
Ai mk, mk sẽ lại!
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(A=1-\frac{1}{5}=1-0.2=0.8\)
Ai mk, mk sẽ lại!
tính giá trị biểu thức
A =\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
B = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{n.\left(n+1\right)}\)(n\(\in\)Z, n\(\ne\)0; n\(\ne\)-1)
Tính\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
Tính một cách hợp lí tổng sau :
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}.\)
Tính
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
Tính tổng hoặc hiệu sau:
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+..................+\(\frac{1}{100.101}\)+\(\frac{1}{101.102}\)
B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\)-\(\frac{1}{4.5}\)- .....................-\(\frac{1}{100.101}\)-\(\frac{1}{101.102}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=?\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
A.\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
So sánh A với 1
B.\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
So sánh B với \(\frac{1}{2}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}\)