\(A=2^0+2^3+2^5+...+2^{99}.\)
\(4A=4.\left(2^0+2^3+2^5+...+2^{99}\right)\)
\(4A=2^2+2^5+2^7+....+2^{99}+2^{101}\)
\(4A-A=2^{101}-2^2\)
\(3A=2^{101}-2^2\)
\(A=\frac{2^{101}-2^2}{3}\)
Số các số hạng là : 2^99 - 2^0 = 2^98
Tổng là : (2^99 + 2^0) x 2^98 = 2^198
A=20+23+25+....+299
2A = 23 + 25 + ... + 2100
2A - A = ( 20 + 23 + 25 + ... + 2100 ) - ( 20 + 23 + 25 + .... + 299 )
1A = 2100 - 2
\(A=\frac{2^{100}-2}{1}\)
A = 20 + 23 + 25 + ... + 299
23 . A = 23 + 25 + 27 + ... + 2101
23A - A = ( 23 + 25 + 27 + ... + 2101 ) - ( 20 + 23 + 25 + ... + 299 )
7A = 2101 - 20
A = ( 2101 - 20 ) : 7