Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quốc Tuấn hi

Tính A \(=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

Kudo Shinichi
3 tháng 10 2019 lúc 15:34

\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)

\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)

\(\Leftrightarrow A^3=18+3A\Leftrightarrow A^3-3A-18=0\)

\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)

Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)

\(\Leftrightarrow A=3\)

Chúc bạn học tốt !!!

Kudo Shinichi
3 tháng 10 2019 lúc 15:40

\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)

\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)

\(\Leftrightarrow A^3+18+3A\Leftrightarrow A^3-3A-18=0\)

\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)

Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)

\(\Leftrightarrow A=3\)

Chúc bạn học tốt !!!


Các câu hỏi tương tự
titanic
Xem chi tiết
Hồ Trung Hợp
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
nguyễn Đào Quý Phú
Xem chi tiết
Dương Kim Chi
Xem chi tiết
Vy Thảo
Xem chi tiết
Nguyễn Quang Sáng
Xem chi tiết