Thực hiện phép tính
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+.+2006}\right)\)
Tính A = \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Tính \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2006}\right)\)
Tính Tổng
A = \(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Tính tổng
A = \(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+..+2006}\right)\)
Tình A=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Tính:
\(A=\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot...\cdot\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Thực hiện phép tính :
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+.........+2006}\right)\)
a ) Tính \(A=\left(1-\frac{1}{1+2\:}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Nhanh lên nhé