\(A=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)+\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(A=\frac{2\sqrt{3}-2+3-\sqrt{3}+2\sqrt{3}+2-3-\sqrt{3}}{\sqrt{3}\left(3-1\right)}\)
\(A=\frac{2\sqrt{3}}{2\sqrt{3}}=1\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}.\)
\(=\frac{\left(2+\sqrt{3}\right)\left(2-\sqrt{4+2\sqrt{3}}\right)}{\left(2+\sqrt{4+2\sqrt{3}}\right)\left(2-\sqrt{4+2\sqrt{3}}\right)}+\frac{\left(2-\sqrt{3}\right)\left(2+\sqrt{4-2\sqrt{3}}\right)}{\left(2-\sqrt{4-2\sqrt{3}}\right)\left(2+\sqrt{4-2\sqrt{3}}\right)}\)
\(=\frac{4-2\sqrt{4+2\sqrt{3}}+2\sqrt{3}-\sqrt{3\left(4+2\sqrt{3}\right)}}{4-4-2\sqrt{3}}+\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}}{4-4+2\sqrt{3}}\)
\(=\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}}{2\sqrt{3}}-\frac{4-2\sqrt{4+2\sqrt{3}}+2\sqrt{3}-\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)
\(=\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}-4+2\sqrt{4+2\sqrt{3}}-2\sqrt{3}+\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)
\(=\frac{2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}+2\sqrt{4+2\sqrt{3}}-2\sqrt{3}+\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)