\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\)
\(A=\left(a-\frac{1}{2}A\right).2=\left(\frac{1}{2}-\frac{1}{2^{11}}\right).2=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^9}\)
\(2A-A=1-\frac{1}{2^{10}}\)
ta có 2A = 1 + \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ .......+\(\frac{1}{2^9}\)
A = 2A-A = ( 1+\(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ .....+\(\frac{1}{2^9}\)) - ( \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+......+\(\frac{1}{2^{10}}\))
A = 1-\(\frac{1}{2^{10}}\)
ok xong r nhé