Không ai trả lời đc đành phải tự trả lời thôi :))
A=1/2! - 2/3! - 3/4! - .... - 2013/2014!
=1/2! - (2/3! + 3/4! +...+ 2013/2014!)
= 1/2! - [(3-1)/3! + (4-1)/4!+(4-1)/5! + ... + (2014-1)/2014!]
=1/2! - [(3/3! + 4/4! + ...+ 2014/2014!) - (1/3! + 1/4! +... + 1/2013! + 1/2014!)]
Ta có: Với n là số nguyên dương, n>2
\(\dfrac{n}{n!}\)=\(\dfrac{n}{1....\left(n-1\right)\left(n\right)}=\dfrac{1}{1.2....\left(n-1\right)}=\dfrac{1}{\left(n-1\right)!}\)
Do đó
A=1/2! - [ (1/2! + 1/3! + ... + 1/2013!) - (1/3!+ 1/4! +... + 1/2013! + 1/2014!) ]
= 1/2! - (1/2! - 1/2014!)
= 1/2014!
Vậy đáp án là A = \(\dfrac{1}{2014!}\)