Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Qua công thức trên, bạn có thể rút ra tổng quát: (đây là mình nói thêm)
\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n-2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)
Ta suy ra:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
Thấy \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)
\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Mình nhầm, công thức tổng quát mình nói thêm bạn đổi cái n-2 thành n+2 nha
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ............. + 1/ 98.99.100
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + . . . + 1/98.99.100 = 1/k . (1/1.2 - 1/99.100 . Số k trong đẳng thức trên có giá trị là bao nhiêu ?
koooooooooooooooooooooooooooooooooooooooooooo biết nha
Trần Thùy Dung sai rồi
kết quả là 65/264
Bạn phải hỏi trên trang của bạn chứ , Trương Đỗ Anh Quân
Lê tuấn dũng 4949/19800 mới đúng nha
sao lại n-2 phải là n+2 mà bạn dung ơi