\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
=1/2[1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + 1/3*4 - 1/4*5 + ... + 1/18*19 - 1/19*20]
=1/2[1/2 - 1/19*20]
=1/2*189/380
=189/760
\(\frac{1}{1+2}+\frac{1}{2+3}+\frac{1}{3+4}+...+\frac{1}{2009+2010}\)