Tính :
P = \(\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}}\)
Tính: A= \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+19}\).
Tính nhanh A = \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+19}\)
Bài 1 : Tính tổng S , biết : \(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{2010\times2011}\)
Bài 2 : Tính tổng sau : \(S=\frac{3}{10\times13}+\frac{3}{13\times16}+\frac{3}{16\times19}+....+\frac{3}{58\times61}\)
Bài 3 : Tính tổng sau : \(S=\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}+....+\frac{1}{19\times22}\)
\(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+...+19}\)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+........+\frac{1}{1+2+3+....+19}=?\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...........+\frac{1}{1+2+3+.........+19}\)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+........+\frac{1}{1+2+3+...+19}\)
\(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+...+19}\)
giúp hội trưởng ta với