Tìm x,y,z thỏa mãn; \(\sqrt{\left(x-\sqrt{5}\right)^2}\)+\(\sqrt{\left(y+\sqrt{3}\right)^2}\)+ lx-y-zl=0
Tìm các số x,y,z thỏa mãn đẳng thức:\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)| = 0
1.Tìm các số x, y, z thỏa mãn đẳng thức\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
2.Tìm x,y,z biết : \(x+y=x\div y=3\left(x-y\right)\)
Tìm các số x;y;z thỏa mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
tìm các số x,y,z thỏa mãn đẳng thức :
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+Ix+y+zI=0\)
tìm các số x,y,z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\)+\(\sqrt{\left(y+\sqrt{2}\right)^2}\)+\(|x+y+z|\)=0
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Tìm các số x,y,z thỏa mãn đẳng thức :\(\sqrt{\left(x-\sqrt{2}\right)^2}\)+\(\sqrt{\left(y+\sqrt{2}\right)^2}\)+\(|\)x+y+z\(|\)= 0
1. Tìm x, biết:
a) \(9^{x-1}=\frac{1}{9}\)
b) \(\frac{1}{3}:\sqrt{7-3x^2}=\frac{2}{15}\)
2. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)