9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
tìm x, y, z thỏa mãn phương trình sau :
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
Tìm x ,y,z thỏa mãn với phuong trình sau 9x2+y2+2z2-18x+4z-6y+20=0
Tìm x,y,z thỏa mãn: 9x^2 + y^2 +2z^2 - 18x + 4z - 6y + 20 = 0
Tìm x,y,z thỏa mãn phương trình sau:
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
Tìm x, y, z thoả mãn phương trình sau :
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
Tìm x; y;z thỏa mãn
9x2+y2+2z2-18x+4z-6y+20=0
a. tìm x, y, z thỏa mãn phương trình sau:
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
b. cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) . cmr \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
giúp mình vs
giải phương trình 9x2+y2+2z2-18x+4z-6y+20=0
Tìm x, y, z nguyên thỏa mãn:
a) 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
b) x2 + 5y2 - 4xy + 10x - 22y + |x + y + z|+ 26 = 0
c) x2 + y2 + x - xy + \(\frac{1}{2}\) = 0