x : y : z = 3 : 4 : 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thế vào đẳng thức , ta có :
\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(5.25k^2-3.9k^2-2.16k^2=594\)
\(125k^2-27k^2-32k^2=594\)
\(k^2.\left(125-27-32\right)=594\)
\(66k^2=594\)
\(k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)
\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)
Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)