\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)=>\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)(vì x2+y2+z2=14)
=>\(\frac{x^2}{4}=\frac{1}{4}=>x^2=1=>x=1;x=-1\)
=>\(\frac{y^2}{16}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)
=>\(\frac{z^2}{36}=\frac{1}{4}=>z^2=9=>z=3;z=-3\)
Vậy x=1; y=2 ; z=3
Hoặc x=-1 ;y=-2 ;z=-3