7x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2
Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.
Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6
⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47
x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87
y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27
Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27
7x−3y+12
2y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2
Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.
Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6
⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47
x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87
y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27
Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27