ta có: A=(x^2 +y^2 +z^2 +2xy+2yz+2xz)+(y^2 +2y+1)+(2.(z^2 +2z+1)=0
=>A=(x+y+z)^2 + (y+1)^2 + 2.(z+1)^2 =0 (1)
Mà (x+y+z)^2 >=0 ; (y+1)^2 >=0 ; (2.(z+1)^2 >=0 (2)
từ (1),(2) suy ra:
\(\hept{\begin{cases}x+y+z=0\\y+1=0\\z+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=2\\y=-1\\z=-1\end{cases}}\)