Vì \(\left|x+\frac{3}{4}\right|\ge0;\left|y-\frac{1}{5}\right|\ge0;\left|x+y+z\right|\ge0\) với mọi x; y , z
nên để \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
thì \(\left|x+\frac{3}{4}\right|=\left|y-\frac{1}{5}\right|=\left|x+y+z\right|=0\)
=> \(x+\frac{3}{4}=0;y-\frac{1}{5}=0;x+y+z=0\)
+) x + 3/4 = 0 => x = -3/4
+) y - 1/5 = 0 => y =1/5
+) x + y + z = 0 => z = - x - y = 3/4 - 1/5 = 11/20
Từng cái trị tuyệt đối phải bằng 0 (vì GTTĐ luôn lớn hơn hoặc bằng 0 và tổng đó lại = 0)
1) x+3/4 = 0 => x = -3/4
2) y- 1/5 = 0 => y = 1/5
3) x+y+z=0 => -3/4 + 1/5 +z = 0 => z = 11/20
Vậy (x,y,z) = (-3/4;1/5;11/20)