\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\Leftrightarrow\frac{x}{14}=\frac{y}{40}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{40}=\frac{z}{64}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{2.14+5.40-2.64}=\frac{100}{100}=1\)
\(\Leftrightarrow x=14\)
\(y=40\)
\(z=64\)
\(\frac{x}{y}=\frac{7}{20}=>\frac{x}{14}=\frac{y}{40}\)(1)
\(\frac{y}{z}=\frac{5}{8}=>\frac{y}{40}=\frac{z}{64}\)(2)
Từ (1) và (2) \(=>\frac{x}{14}=\frac{y}{40}=\frac{z}{64}\)
Áp dụng t/c của dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{28+200-128}=\frac{100}{100}=1\)
\(=>\hept{\begin{cases}\frac{x}{14}=1=>x=14\\\frac{y}{40}=1=>y=40\\\frac{z}{64}=1=>z=64\end{cases}}\)
Vậy ...
Ta co : \(\frac{x}{y}=\frac{7}{20}=>\frac{x}{14}=\frac{y}{40}\)(1)
\(\frac{y}{z}=\frac{5}{8}=>\frac{y}{40}=\frac{z}{64}\)(2)
Từ 1 và 2 \(=>\frac{x}{14}=\frac{y}{40}=\frac{z}{64}\)
Đặt \(\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=k\)
\(=>\hept{\begin{cases}x=14k\\y=40k\\z=64k\end{cases}}\)
Thay vào ta có : \(2x+5y-2z=100\)
\(=>28k+200k-128k=100\)
\(=>100k=100\)
\(=>k=1\)
\(=>\hept{\begin{cases}x=14k=14\\y=40k=40\\z=64k=64\end{cases}}\)