a) Gọi 3 số cần tìm lần lượt là x;y;z. Ta có:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{310}{10}=31\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=31\\\frac{y}{3}=31\\\frac{z}{5}=31\end{cases}}\)
\(\hept{\begin{cases}x=62\\y=93\\z=155\end{cases}}\)
b) Gọi 3 số cần tìm lần lượt là: x,y,z. Vì x,y,z tỉ lệ nghịch với 2;3;5 nên
\(2x=3y=5z\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{310}{\frac{31}{30}}=300\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=300\\\frac{y}{\frac{1}{3}}=300\\\frac{z}{\frac{1}{5}}=300\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}.300\\y=\frac{1}{3}.300\\z=\frac{1}{5}.300\end{cases}}\)
\(\hept{\begin{cases}x=150\\y=100\\z=60\end{cases}}\)
tìm x,y,z
\(\hept{\begin{cases}\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\\x^2+y^2+z^2=14\end{cases}}\)
Tìm \(x,y,z\in Z\) sao cho:
\(\hept{\begin{cases}y\left(x+y+z\right)=18\\x\left(x+y+z\right)=-12\\z\left(x+y+z\right)=3\end{cases}}\)
tìm x,y,z thuộc Z sao cho
\(\hept{\begin{cases}x+y=\left(-8\right)\\y+z=4\\z-x=\left(-6\right)\end{cases}}\)
Gởi bn Trân
a. Nếu x \(\ge\)0 suy ra x =1 ( thõa mãn)
Nếu x < 0 suy ra x = -3 ( thõa mãn)
b. \(\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\Rightarrow\hept{\begin{cases}y=1\\x-3=6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-1\\x-3=-6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=2\\x-3=3\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-3\\x-3=-2\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=6\\x-3=1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-6\\x-3=-1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-2\\x-3=-3\end{cases}}\)
; hoặc \(\hept{\begin{cases}y=3\\x-3=2\end{cases}}\)
Từ đó ta có các cặp (x;y) là (9;1); (-3,-1); (6,2); (0,2); (5,3); (1,-3); (4,6); (2,-6)
c. Từ 2x = 3y và 5x = 7z biến đổi về \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{89}=\frac{5z}{50}=\frac{3x-7y+5z}{63-89+50}=\frac{30}{15}=\frac{2}{1}=2\)
\(\rightarrow\)x=42; y=28; z=20
Cho các số nguyên dương x,y,z thỏa mãn:
\(\hept{\begin{cases}x.y=\left(z.t\right)-1\\x+y=z+t\end{cases}}\)
CMR: z = t
Chung minh rang khong co ba so x,y,z thoa man \(\hept{\begin{cases}x< y-z\\y< z-x\\z< x-y\end{cases}}\)
Tìm x,y,z thỏa mãn các điều kiện sau
\(\hept{\begin{cases}\frac{2x^2}{x^2+1}=y\\\frac{2y^2}{y^2+1}=z\\\frac{2z^2}{z^2+1}=x\end{cases}}\)