\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\)
=> \(\frac{x}{14}=\frac{y}{21};\frac{y}{21}=\frac{z}{12}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
Từ trên ta có:
\(\frac{x}{14}=3=>x=3.14=42\)
\(\frac{y}{21}=3=>y=3.21=63\)
\(\frac{z}{12}=3=>z=3.12=36\)
Vậy x = 42
y = 63
z = 36
ỦNG HỘ NHA
Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\left(1\right)\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\left(2\right)\)
Từ ( 1 ) và ( 2 ) => \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\frac{x}{14}=3\Rightarrow x=3\times14=42\)
\(\frac{y}{21}=3\Rightarrow y=3\times21=63\)
\(\frac{z}{12}=3\Rightarrow z=3\times12=36\)
Vậy x = 42 ; y = 63 ; z = 36