\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|y-4\right|=2\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|+\left|x-2\right|+\left|y-4\right|=2\)
Đặt \(A=\left|x-1\right|+\left|x-3\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\3< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\3\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Leftrightarrow1\le x\le3\)
\(\Rightarrow minA=2\)\(\Leftrightarrow1\le x\le3\)
mà \(\left|x-2\right|\ge0\); \(\left|y-4\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-1\right|+\left|x-3\right|+\left|x-2\right|+\left|y-4\right|\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-4=0\\1\le x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\1\le x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(x=2\)và \(y=4\)