a, \(\left(x+y\right)^{2020}+\left|2021-y\right|\le0\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\y=2021\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2021\\y=2021\end{cases}}}\)
b, \(\left|3x+2y\right|^{209}+\left|4y-1\right|^{2020}\le0\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}3x=-2y\\4y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2y\\y=\frac{1.}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=\frac{1}{4}\end{cases}}\)Vậy \(\left\{x;y\right\}=\left\{-\frac{1}{6};\frac{1}{4}\right\}\)