a) | x - 1, 3 | + | 5, 3 - y | = 0
Ta có : \(\hept{\begin{cases}\left|x-1,3\right|\ge0\forall x\\\left|5,3-y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-1,3\right|+\left|5,3-y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,3=0\\5,3-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,3\\y=5,3\end{cases}}\)
Vậy x = 1, 3 ; y = 5, 3
b) | x + 2 | + | 4/5 - 2y | = 0
Ta có : \(\hept{\begin{cases}\left|x+2\right|\ge0\forall x\\\left|\frac{4}{5}-2y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x+2\right|+\left|\frac{4}{5}-2y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2=0\\\frac{4}{5}-2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{2}{5}\end{cases}}\)
Vậy x = -2 ; y = 2/5