\(M=\frac{xy+x+1}{xy+x}=1+\frac{1}{xy+x}\)
Để M nguyên <=> 1 chia hết cho xy +x hay xy +x là ước của 1
=> xy + x = 1 hoặc xy + x = -1
Nếu xy + x = 1 => x.(y+1) = 1 mà x, y nguyên nên x thuộc Ư(1) = {1;-1}
x = 1 => y+ 1 = 1 => y = 0
x = -1 => y + 1 = -1 => y = -2
Nếu xy + x = -1 => x.(y+1)= -1 => x thuộc Ư(1) = {1;-1}
x = 1 => y + 1 = -1 => y = -2
x = -1 => y + 1 = 1 =>y = 0
Vậy (x;y) = (1;0); (-1; -2); (1;-2); (-1;0)