a) => xy - x - y = 0
=> x(y - 1) - y + 1 = 1
=> x(y - 1) - (y - 1) = 1
=> (x - 1)(y - 1) = 1
=> x - 1 = y - 1 = 1 => x = y = 2
hoặc x - 1 = y - 1 = -1 => x = y = 0
Vậy (x;y) \(\in\){(2;2);(0;0)}
b) => xy - x + y = 0
=> x(y - 1) + y - 1 = -1
=> x(y - 1) + (y - 1) = -1
=> (x + 1)(y - 1) = -1
=> x + 1 \(\in\)Ư(-1) = {-1;1}
Ta có bảng sau:
x + 1 | -1 | 1 |
x | -2 | 0 |
y + 1 | 1 | -1 |
y | 0 | -2 |
Vậy (x;y) \(\in\){(-2;0);(0;-2)}