Tìm các số nguyên x, y thỏa mãn đẳng thức:
\(2y^2x+x+y+1=x^2+y^2+xy\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm các số nguyên x,y thoả mãn đẳng thức: \(2xy^2+x+y+1=x^2+2y^2+xy\)
1, Tìm nghiệm nguyên dương của pt
\(x^2+x+19=z^2\)
2, tìm tất cả các cặp số nguyên x; y thỏa mãn đẳng thức:
a, \(y\left(x-1\right)=x^2+2\)
b, \(x^2+xy+y^2=x^2\cdot y^2\)
3, tìm x;y là số tự nhiên thỏa mãn phương trình
\(\left(x+1\right)y^2=x^2+1576\)
M.n ơi giúp mk vs ạ!!!! mk xincamon m.n nhiu a
Cho x,y là các số hữu tỉ thỏa mãn đẳng thức: \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\). Chứng minh rằng \(\sqrt{1+xy}\)là một số hữu tỉ
Tìm các số nguyên x, y thỏa mãn đẳng thức:
2x2+y2+3xy+3x+2y+2=0
tìm x,y thỏa mãn đẳng thức:
\(xy^2+2\left(x+y\right)+1=x^2+2y^2+xy.\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)