<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Tìm x,y,z biết:
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y+2}=x+y+z\left(x,y,z\ne0\right)\)
Tìm số nguyên x;y;z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x;y;z\ne0\right)\)
Tìm x, y, z biết: \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\left(x\ne0\right)\)
\(chox,y,z\ne0;x\ne y;\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}CM:x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho\(x,y,z\ne0\), biết:
\(\frac{y+z-x}{z}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính:\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{z}\right).\left(1+\frac{z}{x}\right)\)
Tìm x, y biết x+y, x-y, xy tỉ lệ nghịch với \(\frac{1}{3};3;\frac{3}{200}\left(x,y\ne0\right).\)
Tính B: \(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)cho\left(x,y,z\ne0,x-y-z=0\right).\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a\ne0,b\ne0,c\ne0\right)\)
CMR \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Tính B: \(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)cho\left(x,y,z\ne0,x-y-z=0\right)\)
Đề học kì đấy mọi người, giải giúp với.