10x = 6y => x = 3y/5
thay vao ta co :
2(3y/5)^2 - y^2 = -28
<=> 18y^2/25 - y^2 = -28
<=> 7y^2 = 700
<=> y = 10
=> x = 6
\(10x=6y\) => \(x=\frac{6y}{10}=\frac{3y}{5}\)
=> \(2x^2-y^2=2\times\left(\frac{3y}{5}\right)^2-y^2=-28\)
<=> \(2\times\frac{9y^2}{25}-y^2=-28\)
<=> \(\frac{18y^2}{25}-y^2=-28\)
<=> \(\frac{-7y^2}{25}=-28\)
<=> \(-7y^2=-700\)
<=> \(y^2=100\)
<=> \(y=10;x=6\) hoặc \(y=-10;x=-6\)
\(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\Rightarrow\frac{x^2}{36}=\frac{y^2}{100}\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=-\frac{28}{-28}=1\)
\(\Rightarrow2x^2=72\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
\(\Rightarrow y^2=100\Rightarrow y=\pm10\)