`Answer:`
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{9}\right)+\left(x+\frac{1}{27}\right)+...+\left(x+\frac{1}{729}\right)=\frac{4209}{729}\)
\(\Leftrightarrow\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{3^2}\right)+\left(x+\frac{1}{3^3}\right)+...+\left(x+\frac{1}{3^6}\right)=\frac{4209}{729}\)
\(\Leftrightarrow6x+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\right)=\frac{4209}{729}\text{(*)}\)
Đặt \(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
\(\Leftrightarrow3N=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(\Leftrightarrow3N-N=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\right)\)
\(\Leftrightarrow2N=1-\frac{1}{3^6}\)
\(\Leftrightarrow2N=\frac{728}{729}\)
\(\Leftrightarrow N=\frac{364}{729}\)
\(\text{(*)}\Leftrightarrow6x+\frac{364}{729}=\frac{4209}{729}\)
\(\Leftrightarrow6x=\frac{3845}{729}\)
\(\Leftrightarrow x=\frac{3845}{4374}\)