a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5