\(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Leftrightarrow3^x+3^x.3^2=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Leftrightarrow3^x\left(1+3^2\right)=3^{34}+3^{36}\)
\(\Leftrightarrow3^x\left(1+3^2\right)=3^{34}\left(1+3^2\right)\)
\(\Leftrightarrow3^x=3^{34}\) ( Chia cả hai vế cho \(1+3^2\) )
\(\Leftrightarrow x=34\)
Vậy : \(x=34\)
\(3^x+3^{x+2}=9^{17}+27^{12}\)
\(3^x+3^x.3^2=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(3^x.\left(1+3^2\right)=3^{34}+3^{36}\)
\(3^x.\left(1+3^2\right)=3^{34}\left(1+3^2\right)\)
\(\Rightarrow3^x=3^{34}\)
\(\Rightarrow x=34\)
\(3^x+3^{x+2}=9^{17}+27^{12}\)
\(3^x\left(1+3^2\right)=3^{34}+3^{36}\)
\(3^x\left(1+3^2\right)=3^{34}\left(1+3^2\right)\)
\(3^x=3^{34}\Rightarrow x=34\)
\(3^x+3^{x+2}=9^{17}+27^{12}\)
\(3^x\left(1+3^2\right)=3^{34}+3^{36}\)
\(=3^x\left(1+3^2\right)=3^{34}\left(1+3^2\right)\)
\(3^x=3^{34}\)
\(\Leftrightarrow x=34\)