\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
<=> \(\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
<=> \(\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)
<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
<=> 3x -1 = 0 hoặc x - 3 = 0 hoặc x - 4 = 0
<=> x = 1/3 hoặc x = 3 hoặc x = 4
Vậy S = { 1/3 ; 3; 4 }