\(2012\cdot|x-2011|+\left(x-2011\right)^2=2013\cdot|2011-x|\)
Tìm x
Tìm số nguyên \(x\)nhỏ nhất thỏa mãn:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right).\left(x-2013\right)>3x-6039\)
Tìm x biết : 2011 . | x - 2011 | + ( x - 2011 )\(^2\)= 2013 . | 2011 - x |
tìm x
\(\left(x-2011\right)^{x+1}-\left(x-2011\right) ^{x+2011}\)
Tìm x biết
\(\left(x-2011\right)^{x+1}-\left(x-2011\right)^{x+2011}=0\)
tìm min
\(A=\left|x-2010\right|+\left(y+2011\right)^{2011}+2011\)
Tìm x:
2012×|x-2011|+ (x-2011)^2=2013×|2011-x|
Tìm x ; y thỏa mãn
\(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)
Tìm số hữu tỉ x biết:
a) \(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b) \(\frac{x-2011}{2010}+\frac{x-2011}{2011}+\frac{x-2011}{2012}=\frac{x-2011}{2013}+\frac{x-2011}{2014}\)