\(2009-\left(4\frac{5}{9}+x-7\frac{7}{18}\right):15\frac{2}{3}=2008\)
\(2009-\left(\frac{41}{9}+x-\frac{133}{18}\right):\frac{47}{3}=2008\)
\(\left(\frac{41}{9}+x-\frac{133}{18}\right):\frac{47}{3}=2009-2008\)
\(\left(\frac{41}{9}+x-\frac{133}{18}\right):\frac{47}{3}=1\)
\(\frac{41}{9}+x-\frac{133}{18}=1\cdot\frac{47}{3}\)
\(\frac{41}{9}+x-\frac{133}{18}=\frac{47}{3}\)
\(\frac{41}{9}+x=\frac{133}{18}+\frac{47}{3}\)
\(\frac{41}{9}+x=\frac{415}{18}\)
\(x=\frac{415}{18}-\frac{41}{9}\)
\(x=\frac{37}{2}\)
\(2009-\left(4\frac{5}{9}+x-7\frac{7}{18}\right)\div15\frac{2}{3}=2008\)
\(\left(4\frac{5}{9}+x-7\frac{7}{18}\right)\div15\frac{2}{3}=2009-2008\)
\(\left(-3\frac{3}{18}+x\right)\div15\frac{2}{3}=1\)
\(-3\frac{3}{18}+x=15\frac{2}{3}\)
\(x=15\frac{2}{3}+3\frac{3}{18}\)
\(x=15\frac{12}{18}+3\frac{3}{18}\)
\(x=18\frac{15}{18}\)
exactly 100%