\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{3}-\frac{1}{x+2}=\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{3}-\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{2011}\)
\(\Rightarrow x+2=2011\)
\(x=2009\)
Đặt biểu thứ là A
2A=2/1.3+2/2.5+...+2/x.x+2
2A=1-1/3+1/3-1/5+.......+1/x-1/x+2
2A=1-1/x+2
x=2009 nha ban
chuc ban hoc gioi
tk cho minh nha